skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Persad, Geeta_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With continued fossil‐fuel dependence, anthropogenic aerosols over South Asia are projected to increase until the mid‐21st century along with greenhouse gases (GHGs). Using the Community Earth System Model (CESM1) Large Ensemble, we quantify the influence of aerosols and GHGs on South Asian seasonal precipitation patterns over the 21st century under a very high‐emissions (RCP 8.5) trajectory. We find that increasing local aerosol concentrations could continue to suppress precipitation over South Asia in the near‐term, delaying the emergence of precipitation increases in response to GHGs by several decades in the monsoon season and a decade in the post‐monsoon season. Emergence of this wetting signal is expected in both seasons by the mid‐21st century. Our results demonstrate that the trajectory of local aerosols together with GHGs will shape near‐future precipitation patterns over South Asia. Therefore, constraining precipitation response to different trajectories of both forcers is critical for informing near‐term adaptation efforts. 
    more » « less